000 03500cam a22004095i 4500
001 20944098
003 BD-ChPU
005 20230723112835.0
008 190423t20192019enka b 001 0 eng d
010 _a 2019940509
020 _a0128112166
_qpaperback
020 _a9780128112168
_qpaperback
035 _a(OCoLC)on1020031407
040 _aYDX
_beng
_cYDX
_erda
_dBDX
_dOCLCQ
_dSINLB
_dOCLCF
_dYDXIT
_dPHCSB
_dV5E
_dOL$
_dDGW
_dOCL
_dDLC
_dBD-ChPU
042 _alccopycat
080 _a519.254:070.3
_bF38
082 0 4 _a650.01/51 F273d 2019
_223
100 1 _aFávero, Luiz Paulo,
_eauthor.
245 1 0 _aData science for business and decision making /
_cLuiz Paulo Fávero, Patrícia Belfiore.
250 _aFirst edition
260 _aLondon :
_bAcademic Press is an imprint of Elsevier,
_c2019.
300 _a1227 pages :
_billustrations ;
_c28 cm.
504 _aIncludes bibliographical references (pages 1195-1214) and index.
505 0 _aPart 1: Foundations of Business Data Analysis -- 1. Introduction to Data Analysis and Decision Making -- 2. Type of Variables and Mensuration Scales -- Part 2: Descriptive Statistics -- 3. Univariate Descriptive Statistics -- 4. Bivariate Descriptive Statistics -- Part 3: Probabilistic Statistics -- 5. Introduction of Probability -- 6. Random Variables and Probability Distributions -- Part 4: Statistical Inference -- 7. Sampling -- 8. Estimation -- 9. Hypothesis Tests -- 10. Non-parametric Tests -- Part 5: Multivariate Exploratory Data Analysis -- 11. Cluster Analysis -- 12. Principal Components Analysis and Factorial Analysis -- Part 6: Generalized Linear Models -- 13. Simple and Multiple Regression Models -- 14. Binary and Multinomial Logistics Regression Models -- 15. Regression Models for Count Data: Poisson and Negative Binomial -- Part 7: Optimization Models and Simulation -- 16. Introduction to Optimization Models: Business Problems Formulations and Modeling -- 17. Solution of Linear Programming Problems -- 18. Network Programming -- 19. Integer Programming -- 20. Simulation and Risk Analysis Part 8: Other Topics -- 21. Design and Experimental Analysis -- 22. Statistical Process Control -- 23. Data Mining and Multilevel Modeling.
520 _aData Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®.
526 _aBBA, MBA, EMBA.
650 0 _aCommercial statistics.
_95195
650 0 _aDecision making
_xStatistical methods.
650 7 _aDecision making
_xStatistical methods.
_2fast
650 7 _aCommercial statistics.
_2fast
_95195
700 1 _aBelfiore, Patrícia Prado,
_eauthor.
776 0 8 _iElectronic version:
_aFávero, Luiz Paulo.
_tData science for business and decision making.
_dLondon, United Kingdom : Academic Press, an imprint of Elsevier, 2019
_w(OCoLC)1098238973
906 _a0
_bibc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c6309
_d6309