000 02135cam a2200373 i 4500
001 19134018
003 BD-ChPU
005 20250114103401.0
008 160613t20162016maua b 001 0 eng
010 _a 2016022992
020 _a9780262035613 (hardcover : alk. paper)
020 _a0262035618 (hardcover : alk. paper)
040 _aDLC
_beng
_cDLC
_erda
_dDLC
_dBD-ChPU
042 _apcc
050 0 0 _aQ325.5
_b.G66 2016
082 0 0 _a006.3/1 G651d 2017
_223
100 1 _aGoodfellow, Ian.
_eauthor.
245 1 0 _aDeep learning /
_cIan Goodfellow, Yoshua Bengio and Aaron Courville.
250 _aFirst edition.
260 _aMassachusetts :
_bThe MIT Press,
_c2017.
300 _axiv, 785 pages :
_billustrations ;
_c24 cm.
490 0 _aAdaptive computation and machine learning
504 _aIncludes bibliographical references (pages 711-766) and index.
505 0 _aApplied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
526 _aComputer Science & Engineering
650 0 _aMachine learning.
_93635
650 0 _aApplied math and machine learning basics
_vProbability and information theory
_vMachine learning basics
_xLinear algebra.
650 0 _aDeep networks : modern practices. Deep feedforward networks
700 1 _aBengio, Yoshua.
_eauthor.
700 1 _aCourville, Aaron.
_eauthor.
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c7659
_d7659